Author Archives: admin - Page 7

Issue # 1, 2019

Content

—————————–

  1. RESEARCH ASSOCIATE POSITION AT COVENTRY UNIVERSITY (UK)
  2. PHD POSITION ON ALFVEN WAVES AND MHD TURBLUENCE (GRENOBLE/CNRS/COVENTRY)
  3. PHD POSITION ON MAGNETOCONVECTION BEYOND THE CHANDRASEKHAR LIMIT (GRENOBLE/COVENTRY/ILMENAU)
  4. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS
  5. NEXT HYDROMAG NEWSLETTER

********************************************************

  1. RESEARCH ASSOCIATE POST ON THE NON-LINEAR STATES OF CONVECTION IN THE EARTH CORE FUNDED BY THE LEVERHULME TRUST AT COVENTRY UNIVERSITY (UK)

—————————–

(from Alban Potherat, Coventry, UK )

A Research Associate position in theoretical fluid mechanics is offered at Coventry University (UK). The project concerns convection under a magnetic field in the so called “tangent cylinder” region of the Earth’s core. Much of the mystery surrounding the Earth’s dynamics (its magnetic field, plate tectonics) lies in the nature of the convective patterns within the Earth’s liquid core, and in particular in the region called the “Tangent Cylinder”. What are the possible convective states under the combined influence of the Earth’s rotation and magnetic field, and how erratic are they? This thesis is part of a theoretical and experimental research program funded by the prestigious Levehulme Trust (http://www.leverhulme.ac.uk), that aims at answering these questions. The purpose of this thesis is to theoretically predict the possible nonlinear convective states for the first time. We will then evaluate which of these states are mostly likely to underpin the Earth’s core convection.

The Research Associate will conduct the theoretical and numerical analysis of the problem under the joint supervision of Prof. Alban Pothérat (http://users.complexity-coventry.org/~potherat/index.html) and Dr Chris Pringle. The study will seek the possible structure of convection by means of advanced stability theory and branch tracking method, to unveil the possible states. In the frame of the research program, the work is purely theoretical/numerical and will be conducted in collaboration with an experimental study that will seek to reproduce and visualise these non-linear states in an experimental model of the Earth Core. Successful candidates are expected to hold a PhD in fluid mechanics or a related discipline, and to have demonstrated excellent abilities in mathematics and programming. The successful candidate will be part the vibrant team of internationally recognised academics and PhD students forming the fluid dynamics group within the Applied Mathematics Research Centre, whose work has been ranked at 83% world-class at the UK’ latest Research Excellence Framework in 2014. This unit is part of the Flow Measurement and Fluid Mechanics Research Centre, specialises in theoretical and experimental fluid mechanics. It is especially renowned for its work on magnetohydrodynamics (MHD), turbulence, stability and geophysical flows. The group closely collaborates with partner groups in world-leading institutions in Australia, China, France, Germany and the UK.

Informal enquiries are welcome: please forward a CV and academic records to Prof. Alban Pothérat (alban.potherat(at)coventry.ac.uk).

PDF Version.

********************************************************

  1. PHD ON ALFVEN WAVES AND MAGNETOHYDRODYNAMIC TURBLUENCE AT GRENOBLE UNIVERSITY/CNRS/COVENTRY UNIVERSITY

—————————–

(from Alban Potherat, Coventry, UK )

Under the joint supervision of Alban Pothérat, (LnCMI Lab/CNRS and Coventry University) (http://users.complexity-coventry.org/~potherat/), Laurent Davoust (Grenoble-INP, SIMAP Lab) and François Debray (LnCMI/CNRS).

Applications are invited for a PhD (possibly including an MSC internship) in experimental fluid mechanics at the LNCMI-G (Grenoble High Magnetic Field Laboratory, http://lncmi.cnrs.fr/?lang=en). The topic concerns the experimental study of turbulence in liquid metals in a very high magnetic field. Turbulence is one of the major challenges of classical physics. Here, we seek to understand the role played by the propagation of magneto-mechanical waves (called Alfven waves) in the statistical and dissipative properties of turbulence and in its transition between two- and three-dimensional states. This type turbulence plays a key role in the dynamics of a number of astrophysical, geophysical, amongst which stellar accretion disks, planetary interiors but is also suspected to appear in engineering problems such as the cooling of nuclear fusion reactors. Until now, Alfven waves have been difficult to reproduce in laboratories because of the extreme conditions in which they appear (high Reynolds numbers and/or high magnetic fields).

The PhD student will be conducting an experimental project during which a turbulent flow is generated within a experimental device filled with liquid metal and placed inside of one the large magnets available at LNCMI in Grenoble, which are capable of producing some of the strongest magnetic fields in the world. In the extreme fields available at LNCMI, the electromagnetic force becomes propagative on the top being diffusive (propagation of Alfvén waves). The goal of this PhD is to use this unique combination of features to reproduce in the laboratory some of the mechanisms that occur in astrophysical or planetary systems and in the context of nuclear energy production, so as to understand them in detail.

The flow will be diagnosed by means of advanced metrology techniques such as ultrasound velocimetry and electric potential mapping. The PhD student will be in charge of running and improving the experimental device, interpreting the results so as to better understand the observed flow regimes. The combination of extreme magnetic fields and this unique experimental device developed by our joint team in Coventry and Grenoble offers for the first time a possibility to extensively map astrophysical and planetary phenomena that have been extremely difficult to probe direclty until now.

Applicants are required to hold, or be on course for an MSc in fluid mechanics or related speciality (Mathematics or Physics). To apply please forward complete academic records and CV to Alban Pothérat (Coventry University, alban.potherat(at)coventry.ac.uk, +44(0)2476 88 88 65), Laurent Davoust (Grenoble-INP, +33(0)476825206, Laurent.Davoust(at)simap.grenoble-inp.fr ) or Francois Debray, LNCMI (francois.debray(at)lncmi.cnrs.fr, +33(0)476 88 12 44). Informal contacts per phone or email are recommended.

PDF Version.

********************************************************

  1. MSc+PhD ON MAGNETOCONVECTION BEYOND THE CHANDRASEKHAR LIMIT

—————————–

(from Alban Potherat, Coventry, UK )

Under the joint supervision of
Alban Pothérat, (Coventry University, UK, http://users.complexity-coventry.org/~potherat/),
Jörg Schumacher (Technische Universität Ilmenau, Germany, https://www.tu-ilmenau.de/tsm/ ),
François Debray (LNCMI/CNRS Grenoble, France, http://lncmi-g.grenoble.cnrs.fr/)

A PhD position in experimental fluid mechanics is open at the High Magnetic Field Laboratory in Grenoble (CNRS/ France). The topic concerns the experimental study of Rayleigh-Bénard convection under the influence of high magnetic fields. This type of convection plays a crucial role in numerous natural and industrial processes: for example in the tachocline layer of the Sun, in the liquid core of the Earth, but also in material processing such as the pulling of silicon ingots or the continuous casting of metallic alloys. In general, magnetic fields introduce a dissipative mechanism through the Joule effect which tends to damp, or even suppress convection. This has an impact on characteristic patterns that form in a convective flow. Chandrasekhar (Physics Nobel Prize 1983) derived the theoretical value of the critical Rayleigh number beyond which convection survives for a given magnetic field in the ideal case of a fluid layer confined between two infinite planes. Nevertheless, when lateral walls are present, convective plumes could potentially persist below this limit and thus locally promote enhanced heat fluxes.

This effect has, until now, never been observed in the laboratory, partly because typical electrically conducting fluids are opaque and thus hard to probe. The purpose of this PhD project is to observe the impact of strong magnetic fields on the formation of convective structures and to characterise these states and their possible transition into turbulent convection. For this, the student will be taking advantage of a new technique recently developed by the groups in Coventry and Grenoble, which consists of using a weakly conducting but transparent electrolyte placed in very high magnetic fields. This technique makes it possible to obtain precise maps of the velocity fields by means of advanced optical measurement methods using laser imaging technology (such as Particle Image Velocimetry or Laser Doppler Anemometry).

The PhD student will be in charge of this experimental project and will collaborate with theoreticians from TU Ilmenau in Germany who will be conducting numerical simulations of this problem in parallel, to compare the results.

Candidates must have a master degree in engineering or physics (300 ECTS credit points) and be motivated to conduct technically advanced experimental projects. Experience in fluid mechanics and/or measurement technology is welcomed. The PhD will benefit from a Co-tutelle between Coventry University (UK) and TU Ilmenau (Germany) leading to a PhD award in each university. The work will be physically based in the laboratory in Grenoble (France) for most of the time with extended stays at sites in the UK and Germany. The position runs for a period of three years and is expected to start in spring 2019.

To apply, please send a CV and a full transcript of academic records to:
Alban Pothérat (Coventry University, alban.potherat(at)coventry.ac.uk)
Jörg Schumacher (TU Ilmenau, joerg.schumacher(at)tu-ilmenau.de)
Francois Debray (LNCMI, francois.debray(at)lncmi.cnrs.fr ).

Informal enquiries are welcome. Please contact Alban Pothérat (+44 2476 88 88 65), Jörg Schumacher (+49 3677 69-2428) TU Ilmenau, or François Debray (+33 4 76 88 12 44), LNCMI.

PDF Version.

********************************************************

  1. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS

—————————–

********************************************************

  1. NEXT HYDROMAG NEWSLETTER

—————————–
will be issued in the end of April, 2019. Please send information you wish to be included into this issue to

a.pedcenko(at)coventry.ac.uk

not later than 15 of April 2019. If you have an urgent announcement, we can publish at http://hydromag.eu between the issues.

—–
Alex Pedcenko
Coventry University
Priory Street Coventry
CV1 5FB United Kingdom
Tel: +44(0)24-77658974
e-mail: a.pedcenko(at)coventry.ac.uk

16-07-2019: Bifurcations and Instabilities in Fluid Dynamics 2019 (BIFD2019)

16-19 July, 2019

University of Limerick, Ireland

Scope of the conference:
  • computational, experimental, and analytical methods

  • liquid films, drops, and bubbles

  • jets, liquid curtains, and bridges

  • waves

  • turbulence

  • buoyancy-driven flows, convection

  • Marangoni effect

  • shear flows, boundary layers

  • industrial applications

  • geophysical fluid dynamics

  • magnetohydrodynamics, electrohydrodynamics

  • biological flows

  • multiphase flows, microfluidics, multiscale phenomena

  • non-Newtonian and compressible flows
  • reacting flows
  • crystal growth

Important dates

Abstract submission opens: 3 December 2018

Abstract submission closes: 3 February 2019

Notification of acceptance: 17 March 2019

Registration opens: 15 April 2019

Registration closes: 12 May 2019

Conference begins: 16 July 2019

For more details visit the conference website: https://www.bifd2019.org/

Associate Research Physicist (MRI) Position at Princeton Plasma Lab, US

Department:  PPPL Plasma Science,  Category:  Research and Laboratory,  Full-Time.

Overview

The successful candidate will perform the experimental campaigns with both the liquid metal Magnetorotational Instability (MRI) experiment and the Hydrodynamic Turbulence Experiment (HTX) by continuously improving device and diagnostics capabilities to study physics of rotating fluids including: MRI; geophysical, solar, and astrophysical flows; and centrifuge applications.

The Princeton Department of Astrophysical Sciences and Plasma Physics Laboratory seek to fill an Associate Research Physicist position. Under supervision by senior personnel, the researcher will conduct campaigns with the liquid-metal MagnetoRotational Instability experiment to investigate: mechanisms for fast angular momentum transport; aspects of geophysical, solar, and astrophysical flows; and the use of the apparatus as a high-efficiency centrifuge.  Candidates must have an extensive background in experimental physics, preferably fluid dynamics, liquid-metal MHD, or plasma physics.

Responsibilities

Major responsibilities include: handling liquid gallium in the laboratory; designing and implementing diagnostics; performing experiments; analyzing data; and interpreting, presenting and publishing results jointly with other researchers. Coordination with other technical, engineering and administrative personnel will also be essential.

Qualifications

Applicant should have a Ph.D. in plasma physics or related physics, with preference given to applicants with experience in fluid dynamics, liquid metal MHD and its diagnostics, data acquisition, data processing, and applications to astrophysics and geophysics.  Appointments will begin as soon as feasible.

Interested persons should submit a curriculum vita, bibliography, a statement of research interests, and provide contact information for three references.    For further inquiries, contact hji@pppl.gov or egilson@pppl.gov.

Princeton University is an Equal Opportunity/Affirmative Action Employer and all qualified applicants will receive consideration for employment without regard to age, race, color, religion, sex, sexual orientation, gender identity or expression, national origin, disability status, protected veteran status, or any other characteristic protected by law.

More Info and Link to the orignal advertisment

 

Issue #3, 2018

Content

—————————–

  1. PAMIR 2019 CONFERENCE
  2. MHD DAYS and GDRI DYNAMO MEETING
  3. READER/PROFESSOR POSITION AT COVENTRY, UK
  4. POSTDOC at PRINCETON PLASMA PHYSICS LAB, US
  5. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS
  6. NEXT HYDROMAG NEWSLETTER

********************************************************

  1. 11th PAMIR INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED MHD
    —————————–
    (from Anne-Lise Daltin, France)
    The next PAMIR conference will be organised by SIMaP (University of Grenoble) and LISM (University of Reims Champagne-Ardenne), Reims, France, from July 1st to July 5th, 2019.

    Message from The Chairmen

    We are pleased to welcome you to the 11th pamir conference in the city of Reims, an Art and History City with its UNESCO World Heritage sites.

    The topics of the Conference are the same of the past editions, but together with the usual topics there are someone that has been only recently introduced, such as the thermoacoustic effect, the born-again interest for the MHD power generation and the magnetoelectrochemistry. The introduction of new topics at each edition of this conference is the signal that MHD is still a child science and it needs to grow. Most part of processes, devices and applications that are presented in this conference are futuristic, but this is the nature of MagnetoHydroDynamics, which very often deals with unexplored territories of science and technology.

    It is aim of this edition of the pamir to maintain this tradition, and to favour new advances and transnational collaborations in this fascinating field of research.

    We are looking forward to meeting you in Reims during pamir 2019 and to sharing a most pleasant, interesting and fruitful conference.

    More detail about the both organisations of the conference and summer school could be found on the web site of the conference:

    http://www.univ-reims.fr/pamir2019

********************************************************

  1. MHD DAYS and GDRI DYNAMO MEETING
    —————————–
    (from Frank Stefani and Andre Giesecke, Germany)
    Dear colleagues,this is a short reminder for registration for the joint MHDDAYS and GDRI Dynamo Meeting taking place from November 26 to November 28 in Dresden, Germany. Please, find further information at https://www.hzdr.de/db/Cms?pOid=56001&pNid=0Deadline for registration is October 15. This deadline is fixed as the quota for accommodation is no longer available after that date.We therefore kindly ask all interested people to register timely by15 October at https://www.intercom-dresden.de/secure/conreg_mhd2018/Yours sincerely,

    Frank Stefani and Andre Giesecke

    (Organizing committee)

********************************************************

  1. READER/PROFESSOR WITHIN THE FLUID AND COMPLEX SYSTEMS RESEARCH CENTRE (COVENTRY)

—————————–
(from Alban Potherat, UK)

Job title Reader/Professor within the Fluid and Complex Systems Research Centre
Job reference REQ006189
Application closing date 09/11/2018
Faculty / School or Service Faculty of Engineering, Environment & Computing
Salary £50,141 – £62,558 per annum
Package As one of Coventry’s biggest employers, we offer some pretty impressive benefits including an excellent pension scheme and generous holiday allowances.
Job category/type Research

Job description

The Fluid and Complex Systems Research Centre, based at Coventry University is looking to recruit a Reader or a Professor to a new research leadership position. This leading Centre brings together over one hundred leading applied mathematicians, experimentalists, theoreticians, and specialists in scientific computing to tackle cutting edge challenges in fluid and complex systems.

The Centre currently consists of four research groups:

  • Fluid Dynamics
  • Advanced Computing
  • Statistical Physics
  • Flow Measurement and Smart Pipes

Our research benefits from an impressive and growing network of academic, commercial and government partnerships across the globe. We have a current portfolio of 35 active research projects, worth over GBP 11M ranging from prestigious research grants to industrial research contracts. Our unique combination of expertise and facilities allows us to work across multiple research topics industrial sectors to be one of the UK’s leading research centres in fluid mechanics.

We are looking for an experienced engineering fluid mechanics academic on the career pathway to a Professorship position, who will establish a fifth research group in the Centre to be focused on engineering applications of fluid mechanics. The new group will specialise in engineering problems with the unique advantage of the in-house support of world-leading experts in fundamental fluid mechanics, physics, computing and instrumentation from the existing groups.  You will have the passion to lead the development and delivery of a research area relevant to the Centre and capable of stepping into a strong leadership role.

The requirements for this post include:

  • leading in one or more academic disciplines aligned to engineering fluid mechanics, for example, flow control, material processing, fluid-structure interaction, or others.
  • record of success in achieving high quality research funding from UK and overseas bodies, or industrial partners.
  • strong record of PhD supervision with more than 3 successful completions within the last 5 years.
  • highly motivated individual.
  • extensive high quality publishing record.
  • willingness and ability to lead a multidisciplinary research team.

For further information or informal discussions regarding this appointment, please contact:

Please click here to view the Job Description and Person Specification

Interview date: w/c 3rd December 2018


********************************************************

  1. ASSOCIATE RESEARCH PHYSICIST POSITION at PRINCETON PLASMA PHYSICS LAB, US.
    —————————–
    (from Hantao Ji, US)
    The Princeton Department of Astrophysical Sciences and Plasma Physics Laboratory seek to fill an Associate Research Physicist position. Under supervision by senior personnel, the researcher will conduct campaigns with the liquid-metal MagnetoRotational Instability experiment to investigate: mechanisms for fast angular momentum transport; aspects of geophysical, solar, and astrophysical flows; and the use of the apparatus as a high-efficiency centrifuge. Candidates must have an extensive background in experimental physics, preferably fluid dynamics, liquid-metal MHD, or plasma physics. 

     

    The successful candidate will perform the experimental campaigns with both the liquid metal Magnetorotational Instability (MRI) experiment and the Hydrodynamic Turbulence Experiment (HTX) by continuously improving device and diagnostics capabilities to study physics of rotating fluids including: MRI; geophysical, solar, and astrophysical flows; and centrifuge applications.

    For more information check the opening website:

    https://pppl-princeton.icims.com/jobs/9236/associate-research-physicist-%28mri%29/job

********************************************************

  1. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS

—————————–

********************************************************

  1. NEXT HYDROMAG NEWSLETTER

—————————–

will be issued in the end of December, 2018. Please send
information you wish to be included into this issue to

 a.pedcenko(at)coventry.ac.uk

not later than 20 of December, 2018.

If you have an urgent announcement, we can publish at http://hydromag.eu between the
issues.

 

—–
Alex Pedcenko
Coventry University
Priory Street
Coventry CV1 5FB
United Kingdom
Tel: +44(0)24-77658974
e-mail: a.pedcenko(at)coventry.ac.uk

 

Reader/Professor within the Fluid and Complex Systems Research Centre (Coventry, UK)

 

Job title Reader/Professor within the Fluid and Complex Systems Research Centre
Job reference REQ006189
Application closing date 09/11/2018
Faculty / School or Service Faculty of Engineering, Environment & Computing
Salary £50,141 – £62,558 per annum
Package As one of Coventry’s biggest employers, we offer some pretty impressive benefits including an excellent pension scheme and generous holiday allowances.
Job category/type Research

Job description

The Fluid and Complex Systems Research Centre, based at Coventry University is looking to recruit a Reader or a Professor to a new research leadership position. This leading Centre brings together over one hundred leading applied mathematicians, experimentalists, theoreticians, and specialists in scientific computing to tackle cutting edge challenges in fluid and complex systems.

The Centre currently consists of four research groups:

  • Fluid Dynamics
  • Advanced Computing
  • Statistical Physics
  • Flow Measurement and Smart Pipes

Our research benefits from an impressive and growing network of academic, commercial and government partnerships across the globe. We have a current portfolio of 35 active research projects, worth over GBP 11M ranging from prestigious research grants to industrial research contracts. Our unique combination of expertise and facilities allows us to work across multiple research topics industrial sectors to be one of the UK’s leading research centres in fluid mechanics.

We are looking for an experienced engineering fluid mechanics academic on the career pathway to a Professorship position, who will establish a fifth research group in the Centre to be focused on engineering applications of fluid mechanics. The new group will specialise in engineering problems with the unique advantage of the in-house support of world-leading experts in fundamental fluid mechanics, physics, computing and instrumentation from the existing groups.  You will have the passion to lead the development and delivery of a research area relevant to the Centre and capable of stepping into a strong leadership role.

The requirements for this post include:

  • leading in one or more academic disciplines aligned to engineering fluid mechanics, for example, flow control, material processing, fluid-structure interaction, or others.
  • record of success in achieving high quality research funding from UK and overseas bodies, or industrial partners.
  • strong record of PhD supervision with more than 3 successful completions within the last 5 years.
  • highly motivated individual.
  • extensive high quality publishing record.
  • willingness and ability to lead a multidisciplinary research team.

For further information or informal discussions regarding this appointment, please contact:

Please click here to view the Job Description and Person Specification

 

Interview date: w/c 3rd December 2018