Category Archives: Newsletters

Hydromag Newsletter #4, 2023 

CONTENTS

————–

  1. Open Position: Associate Professor Research FCS (Coventry, UK)
  2. Open Position: Assistant Professor Research FCS (Coventry, UK)
  3. Dynamics Days Europe 2024 (Bremen, Germany)
  4. BIFD 2024 (Edinburg, UK)
  5. Upcoming Conferences on MHD and Related Subjects
  6. Next Hydromag Newsletter

 

 

 

I — Associate Professor Research FCS (Coventry, UK)

 

Job Title Associate Professor Research FCS
Job Reference 903
Application Closing Date 19/11/2023
Division, Department Research Institute for Complex Systems (ICS), ICS Research Centre for Fluid and Complex Systems (FCS)
Salary £57,696.00 – £71,469.00 per annum
Mode Permanent, Full Time

 

Applications are invited for an Associate Professor in statistical physics, fluid mechanics or nonequilibrium systems in the Centre for Fluid and Complex Systems, Coventry University.
As an Associate Professor (Research) you will actively be contributing to the research strategy and activities within the Research Centre with the aim of providing strategic direction, academic leadership and management of research.

The post is expected to align with one of the following research groups:

  • The Nonequilibrium in Environment and Engineering Systems (NEES) research group uses a blend of engineering sciences, physics and mathematics to study and model problems involving fluid dynamics and nonequilibrium systems and their applications to environmental and geophysical problems.
  • The Statistical Physics research group is interdisciplinary in nature and combines network science, cultural complexity, biophysics, sociophysics, computational physics, scientometrics, stochastic dynamics in nature/laboratory, information theory, and other areas. Classical and quantum statistical physics, focusing on universality in and out-of-equilibrium, also remains at the core of the group’s activities.
  • The Fluids research group specialises in turbulence, instabilities, magnetohydrodynamics, transition and control, particulate flows, rotating flows, convection and plasma physics. Besides an internationally recognised expertise in these fundamental fields, the group is renowned for its cutting-edge research based on the application of these fields into industrial fluid mechanics, nuclear fusion, astrophysical fluid dynamics and especially geophysical fluid dynamics and planetary interiors.

The centre operates at the core of a large network of international collaborators with the specificity of blending theoretical with in-house experimental approaches. The centre maps to REF Unit of Assessment 10 (mathematics) and 95% of its output was deemed internationally excellent or world-leading during the 2021 REF exercise. The centre’s research is supported by UK and European funding bodies (UKRI, ERC and others), as well as industry.

As an Associate Professor within FCS you will be responsible for commissioning and leading impactful research while working with the head of the group to provide leadership in research activity or develop and lead independent research groups. You will take the lead in promoting and disseminating research outputs in a range of field-specific media, attend and present research at relevant conferences, give invited lectures, chair sessions and sit on conference organising committees. You will lead major funding bids and seek and secure external research funding.

The role will allow you to take an active lead in the research centres strategy and agenda, producing research with a demonstrable contribution to society and the economy through developing relationships and partnerships externally. You will also be a key part of leading the research culture and environment of the university group while supervising research fellows/assistants, doctoral students, masters’ students, technical and other support staff.

Further information

For informal enquiries about the position, please contact:

Statistical Physics research group:

Nonequilibrium in Environment and Engineering Systems research group:

 

Further information regarding the Research Centre for Fluid and Complex Systems can be found here.

Click here to view the full job description and person specification.

More details and apply online

 

 

II — Assistant Professor Research FCS (Coventry, UK)

 

Job Title Assistant Professor Research FCS
Job Reference 901
Application Closing Date 19/11/2023
Division, Department Research Services (RS), ICS Research Centre for Fluid and Complex Systems (FCS)
Salary £44,263.00 – £63,029.00 per annum
Mode Permanent, Full Time

Applications are invited for an Assistant Professor in statistical physics, fluid mechanics or nonequilibrium systems in the Centre for Fluid and Complex Systems, Coventry University.

As an Assistant Professor you will actively contribute to the centre with 60% of your time being spent on research within the centre’s field and 40% spent on teaching within appropriate subjects.

The post is expected to align with one of the following research groups:

The post is expected to align with one of the following research groups:

  • The Nonequilibrium in Environment and Engineering Systems (NEES) research group uses a blend of engineering sciences, physics and mathematics to study and model problems involving fluid dynamics and nonequilibrium systems and their applications to environmental and geophysical problems.
  • The Statistical Physics research group is interdisciplinary in nature and combines network science, cultural complexity, biophysics, sociophysics, computational physics, scientometrics, stochastic dynamics in nature/laboratory, information theory, and other areas. Classical and quantum statistical physics, focusing on universality in and out-of-equilibrium, also remains at the core of the group’s activities.
  • The Fluids research group specialises in turbulence, instabilities, magnetohydrodynamics, transition and control, particulate flows, rotating flows, convection and plasma physics. Besides an internationally recognised expertise in these fundamental fields, the group is renowned for its cutting-edge research based on the application of these fields into industrial fluid mechanics, nuclear fusion, astrophysical fluid dynamics and especially geophysical fluid dynamics and planetary interiors.

You will be responsible for commissioning and delivering impactful research, while working with the group and the centre at large to grow research activity and develop independent research.

The centre operates at the core of a large network of international collaborators with the specificity of blending theoretical with in-house experimental approaches. The centre maps to REF Unit of Assessment 10 (mathematics) and 95% of its output was deemed internationally excellent or world-leading during the 2021 REF exercise. The centre’s research is supported by UK and European funding bodies (UKRI, ERC and others), as well as industry.

The role will allow you to contribute to the research centre’s strategy, producing research with a demonstrable contribution to knowledge, society and the economy, growing the centre’s national and international network of collaborators. You will seek external funding through grants or contracts to support your research, whilst supervising research fellows/assistants, doctoral students, masters’ students, technical and other support staff.

The School of Computing, Mathematics and Data Science offers undergraduate degrees in mathematics, mathematics and statistics, physics and mathematics, physics, and data science; our postgraduate courses include data science & computational intelligence and data science. You will be able to contribute to teaching modules on these courses at undergraduate and postgraduate level. You will work closely with the course teams to help provide the high-quality learning environment our students expect.

Our Successful Candidate

Within the centre, the successful applicant will be expected to lead research within the remit of REF UoA 10 (mathematics), to deliver internationally excellent or world-leading outputs, industrial or societal impact, and to attract sufficient funding to help growth the centre’s research portfolio.

Qualifications Required

A PhD in either PhD in engineering, physics, mathematics or equivalent.

The Benefits

As a staff member of Coventry University, you will have a access to a wide range of industry leading rewards and benefits which includes:

  • Excellent Employers Pension Contribution
  • 38 days Annual leave plus Bank Holidays
  • New Holiday Purchase Scheme up to 5 additional days
  • BUPA Cash Plan
  • 50% off Tuition Fee’s for staff dependants
  • CU Reward Scheme – Discounts across a range of High Street/ Online Retailers
  • New Electric Car Scheme
  • Cycle To work scheme

Further information

For informal enquiries about the position, please contact:

Statistical Physics research group:

Nonequilibrium in Environment and Engineering Systems research group:

 

Further information regarding the Research Centre for Fluid and Complex Systems can be found here.

Click here to view the full job description.

More details and apply online

 

 

III — Dynamics Days Europe 2024 (Bremen, Germany)

 

Bremen, Germany

July 29 – August 2, 2024

https://dynamicsdays.eu/bremen2024/

 

At the present time, we invite proposals for mini-symposia with a final submission deadline of December 31, 2023.  For details, please see https://dynamicsdays.eu/bremen2024/Minisymposia/

Please mark your calendars for further dates and deadlines:

Early bird registration opens:

  • March 1, 2024

Deadline for submitting mini-symposium talks, contributed talks, and posters:

  • March 15, 2024

Early bird registration deadline:

  • April 30, 2024

Late registration deadline:

  • June 30, 2024

 

We very much look forward to welcoming you in Bremen!

 

With best regards,

The Local Organizing Team

Igors Gorbovickis (Constructor University)

Marc-Thorsten Hütt (Constructor University)

Marc Keßeböhmer (University of Bremen)

Keivan Mallahi-Karai (Constructor University)

Hildegard Meyer-Ortmanns (Constructor University)

Marcel Oliver (KU Eichstätt-Ingolstadt)

Ivan Ovsyannikov (Constructor University)

Sören Petrat (Constructor University)

Anke Pohl (University of Bremen)

Jens Rademacher (University of Hamburg)

Roland Welter (University of Hamburg)

 

IV — BIFD 2024 — Bifurcations and Instabilities in Fluid Dynamics (Edinburgh, UK)

Dear Colleague,

 

We would like to warmly welcome you to The 10th Bifurcations and Instabilities in Fluid Dynamics (BIFD) meeting to be held in Edinburgh from 24-28 June 2024.

BIFD Edinburgh 2024 is jointly organised by The University of Edinburgh (Schools of Engineering and Physics & Astronomy), Imperial College London (Department of Chemical Engineering) and The University of Strathclyde (Department of Mathematics and Statistics).

As you might already know BIFD is a biannual event and BIFD Edinburgh 2024 is its 10th international symposium making it even more special. The Symposium typically attracts >200 researchers (pre-COVID) from all over the globe working in nearly all areas of fluid dynamics. We expect BIFD Edinburgh 2024 to also do the same and in fact, attract >230 researchers. BIFD series is also a fantastic platform for early career researchers to showcase their work.

We have an excellent set of Keynote Speakers lined up. The BIFD Edinburgh 2024 will have talks and posters. An array of social interactions including traditional Scottish entertainment is organised.

Science must be accessible and inclusive. So we are inviting sponsors to enable researchers from under-represented groups, conflict zones and low-middle-income countries to attend this Symposium. This will also help keep the registration fee as low as possible covering all 4 days of conference lunches, gala dinner, welcome receptions, and Symposium merchandise.

All information in the flyer is attached at the website below! Please circulate this in your groups. Looking forward to seeing you all at Edinburgh in June 2024.

Website: https://bifd2024.eng.ed.ac.uk/

 

Sincerely,

BIFD Edinburgh 2024 Organisers

Prash Valluri (Edinburgh), Omar Matar (Imperial), Stephen Wilson (Strathclyde), Dani Orejon (Edinburgh), Khellil Sefiane (Edinburgh), Rachel Schwind (Edinburgh). Alex Wray (Strathclyde), Rodrigo Ledesma-Aguilar (Edinburgh), Alex Morozov (Edinburgh), John Christy (Edinburgh), Khushboo Pandey (Edinburgh), Laura Smith (Edinburgh), Karen Brocklehurst (Edinburgh) and Kimberly Ross (Edinburgh)

 

https://bifd2024.eng.ed.ac.uk/

 

 

V — Upcoming Conferences on MHD and Related Subjects

 

 

 

VI — Next Hydromag Newsletter

Will be issued in the end of January, 2024. Please send information you wish to be included into this issue to

a.pedcenko(at)coventry.ac.uk

not later than 20 of January, 2024.

If you have an urgent announcement, we can publish at http://hydromag.eu  between the issues.

 

 

Alex Pedcenko (aa3025(at)coventry.ac.uk)
Coventry University, School of Computing, Mathematics and Data Science
Priory Street
Coventry CV1 5FB
United Kingdom

Issue#4, 2019

Hydromag Newsletter

Issue No. 4, 2019

 

Dear Colleagues,

Happy New Year!

The ICTAM 2020 abstracts’ deadline is next week (10/01/2020), I’ve been asked to remind you about the following thematic sessions

 

Contents 

  1. ICTAM 2020 – Electro and Magnetohydrodynamics (FM18)
  2. ICTAM 2020 – Turbulence (FM15)
  3. ICTAM 2020 – Flow Instability and Transition (FM08)
  4. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS
  5. NEXT HYDROMAG NEWSLETTER

 


I.   ICTAM 2020  in Milano, Session on Electro and Magnetohydrodynamics (FM18): Confirmed invited speakers and deadline for abstracts (10/01/2020)

(from Alban Potherat, Coventry, UK)

 

Dear Colleagues,

We are pleased to announce an Electro- and Magnetohydrodynamics Thematic Session for ICTAM 2020 (FM18).

Milano will be hosting the 25th International Congress of Theoretical and Applied Mechanics (25th ICTAM) from 23 to 28 August 2020. This edition will follow the 24th ICTAM held in Montreal in August 2016. ICTAM congresses are organized under the auspices of the International Union of Theoretical and Applied Mechanics (IUTAM) and gather every four years the mechanics community from around the world.

Confirmed invited speakers:

  • Dr Frank STEFANI, Helmholtz-Zentrum Dresden-Rossendorf (Germany)
  • Prof. Pedro Ángel VAZQUEZ GONZALEZ, Universidad de Sevilla (Spain)
  • Prof. Greg SHEARD, Monash University (Australia)

The essential information about  ICTAM can be found in the attached flyer, and further details at https://www.ictam2020.org/

Abstract submission begins on 1st – October – 2019, until  January 10th 2019

The congress is organized in thematic sessions, of which them being Electro- and Magnetohydrodynamics (FM18). This session is also a unique opportunity to bring together the EHD and MHD communities, in order to highlight all the scientific ingredients common to these scientific disciplines.

We are welcoming submissions on such topics as

  • liquid metal MHD, both fundamental and applied to industrial problems
  • astro- and geophysical MHD, including planetary interiors, convection and dynamo problems
  • numerical and experimental methods in MHDs,
  • electrohydrodynamic flows in liquids,
  • EHD Microfluidics, spraying and atomization

not excluding other topics on electro- and magneto-hydrodynamics

Please forward this message to colleagues interested in this thematic session or in ICTAM, and do not hesitate to contact us for any questions.

Yours sincerely,

Alban Potherat and Laurent Davoust,

organizers of the Electro- and Magnetohydrodynamics Session.

 


II.   ICTAM 2020: Session on Turbulence (FM15) (deadline 10-01-2020)

 (from Martin Oberlack, Germany:  ictam2020@fdy.tu-darmstadt.de)

 

Dear Colleagues,

The 25th International Congress of Theoretical and Applied Mechanics (ICTAM2020) will be held in Milan, Italy, August 23-28, 2020. We have been asked to co-chair and organize the Thematic Session FM15 Turbulence.

For this we are pleased to invite you to submit an abstract to the aforementioned Session. An extended abstract has to be uploaded here: https://www.ictam2020.org/abstract-submission.

We are already seeing a very interesting group of internationally renowned speakers, so we expect a very exciting session.

The closing date for extended abstract submission is January 10, 2020. We highly recommend uploading the extended abstracts way before the closing date to avoid a final rush and overload of the website.

We are very much looking forward to meeting you in Milano.

Wishing you happy holidays and a successful new year

Martin Oberlack (TU Darmstadt / Germany) and Peter Frick (Perm State University / Russia)

 


III.    ICTAM 2020: Flow Instability and Transition Thematic Session of ICTAM 2020 (FM08) (deadline 10-01-2020)

 (from Marcello Augusto Faraco de Medeiros and Alex Gelfgat)

 

Dear Colleagues,

This is an announcement of the Flow Instability and Transition Thematic Session of ICTAM 2020.

Milano will have the privilege of hosting the 25th International Congress of Theoretical and Applied Mechanics (25th ICTAM) from 23 to 28 August 2020. This edition will follow the 24th ICTAM held in Montreal in August 2016.

ICTAM congresses are organized under the auspices of the International Union of Theoretical and Applied Mechanics (IUTAM) and gather every four years the mechanics community from around the world.

All the information can be found at https://www.ictam2020.org

ABSTRACT SUBMISSION DEADLINE10/January/2020

The congress is organized in thematic sessions, one of them being Flow Instability and Transition (FM08).

We expect this will be the leading meeting on this topic in 2020.

This Thematic Section has the following confirmed invited speakers:

  • Denis Sipp – ONERA – France
  • Ardeshir Hanif – KTH – Sweden
  • Dwight Barkley – University of Warwick- UK
  • Björn Hof –  IST – Austria

Examples of topics that would be of interest are:

  • Novel experimental and numerical approaches to studies of instability and transition,
  • Instability and transition in shear flows,
  • Instability and transition in flows affected by heat/mass transfer,
  • Instability and transition in compressible flows,

not excluding other topics in transition and instability.

We are sorry if you get multiple copies of this mail.

Please forward this message to colleagues interested in this thematic session or in ICTAM, and do not hesitate to contact us for any questions.

 

Yours sincerely,

Alexander Gelfgat and Marcello Augusto Faraco de Medeiros

organizers of the FM08 Flow Instability and Transition Session

 

On behalf of the Local Organizing Committee and of the IUTAM Congress Committee, I would like to let you have my warmest invitation to join us in Milano for the 25th ICTAM.

Alberto Corigliano

President 25th ICTAM

 


IV.    Schedule of Conferences on MHD and Related Topics 

 


V. NEXT HYDROMAG NEWSLETTER

Next Hydromag Newsletter will be issued at the end of April 2020. Please send information you wish to be included into this issue to

a.pedcenko(at)coventry.ac.uk

not later than 15 of April 2020. If you have an urgent announcement, we can publish at http://hydromag.eu between the issues.

Please forward any information you may have on MHD-related conferences, meetings, publications etc.

Thank you,

—–
Alex Pedcenko
Coventry University
Priory Street Coventry
CV1 5FB United Kingdom
Tel: +44(0)24-77658974
e-mail: a.pedcenko(at)coventry.ac.uk

Issue #3, 2019

Hydromag Newsletter

Issue No. 3, 2019

Content

—————————–

  1. ECCOMAS 2020: FLUID MECHANICS OF LIQUID METAL BATTERIES
  2. RESEARCH FELLOW POSITION IN THEORETICAL FLUID MECHANICS AT COVENTRY UNIVERSITY (UK)
  3. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS
  4. NEXT HYDROMAG NEWSLETTER

********************************************************

1. ECCOMAS 2020: FLUID MECHANICS OF LIQUID METAL BATTERIES

—————————–

(from Tom Weier, Dresden, Germany)

The joint 14th World Congress in Computational Mechanics and ECCOMAS Congress is expected to be one of the largest computational mechanics and applied mathematics events ever organized with an expected participation from all parts of the globe, representing multiple sectors, academia, industry and government institutions.

Through the organization of minisymposia, it will both cover the latest developments in all aspects of computational mechanics, computational fluid dynamics and applied mathematics in conjunction with industrial needs as well as emerging ones. This congress shall fully engage computational mechanics in the XXI century.

mini-symposium on fluid dynamics of liquid metal batteries (LMB) will be organized in the framework of the ECCOMAS 2020 congress to be held on July 19-24, 2020 in Paris. The proposed minisymposium aims to support the trending interest in the topic of LMBs, to offer a platform for discussion, and to facilitate future collaborations. While the focus shall be on fluid dynamics, lectures on other aspects of LMBs and related devices (e.g., aluminum reduction cells) will be equally welcome and considered to be in the scope of the minisymposium. Topics to be addressed include: mixing and mass transfer, natural convection, magnetohydrodynamic instabilities, electro-vortex flows, electrochemistry of LMBs, scale-up, and grid integration as well as stack design and heat transfer.

Abstracts can be submitted to the conference website after September 15, 2019. Please contact the mini-symposium organizers, Tom Weier, Wietze Herreman and Oleg Zikanov if you have any questions.

********************************************************

2.  RESEARCH FELLOW POSITION IN THEORETICAL FLUID MECHANICS AT COVENTRY UNIVERSITY (UK)

—————————–

Location: Coventry Placed On: 2nd August 2019
Salary: £32,243 to £40,802 per annum Closes: 2nd September 2019
Hours: Full Time Job Ref: REQ007193
Contract Type: Permanent

A Research Fellow position in theoretical fluid mechanics is offered at Coventry University (UK). The project concerns convection under a magnetic field in the so called “tangent cylinder” region of the Earth’s core. Much of the mystery surrounding the Earth’s dynamics (its magnetic field, plate tectonics) lies in the nature of the convective patterns within the Earth’s liquid core, and in particular in the region called the “Tangent Cylinder”. What are the possible convective states under the combined influence of the Earth’s rotation and magnetic field, and how erratic are they? This study is part of a theoretical and experimental research program funded by the prestigious Leverhulme Trust (http://www.leverhulme.ac.uk), that aims at answering these questions. The purpose of this thesis is to theoretically predict the possible nonlinear convective states for the first time. We will then evaluate which of these states are mostly likely to underpin the Earth’s core convection.

The Research Fellow will conduct the theoretical and numerical analysis of the problem under the joint supervision of Prof. Alban Pothérat (http://users.complexity-coventry.org/~potherat/index.html) and Dr Chris Pringle.  The study will seek the possible structure of convection by means of advanced stability theory and branch tracking method, to unveil the possible states. In the frame of the research programme, the work is purely theoretical/numerical and will be conducted in collaboration with an experimental study that will seek to reproduce and visualise these non-linear states in an experimental model of the Earth Core.

Successful candidates are expected to hold a PhD in fluid mechanics or a related discipline and to have demonstrated excellent abilities in mathematics and programming.

The successful candidate will be part the vibrant team of internationally recognised academics and PhD students forming the fluid dynamics group within the Applied Mathematics Research Centre, whose work has been ranked at 83% world-class at the UK’ latest Research Excellence Framework in 2014. This unit is part of the Fluid and Complex Systems Research Centre, and specialises in theoretical and experimental fluid mechanics. It is especially renowned for its work on magnetohydrodynamics (MHD), turbulence, stability and geophysical flows. The group closely collaborates with partner groups in world-leading institutions in Australia, China, France, Germany and the UK.

Informal enquiries are welcome: please forward a CV and academic records to Prof. Alban Pothérat (alban.potherat@coventry.ac.uk).

Refs.:: Laboratory model for the convective patterns in the Tangent Cylinder of the Earth core (Aujogue, Pothérat, Sreenivasan & Debray, 2018, Journal of Fluid Mechanics)

Apply Online

********************************************************

3. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS

—————————–

********************************************************

4. NEXT HYDROMAG NEWSLETTER

—————————–

will be issued at the end of December 2019. Please send information you wish to be included into this issue to

a.pedcenko(at)coventry.ac.uk

not later than 20 of December 2019. If you have an urgent announcement, we can publish at http://hydromag.eu between the issues.

—–
Alex Pedcenko
Coventry University
Priory Street Coventry
CV1 5FB United Kingdom
Tel: +44(0)24-77658974
e-mail: a.pedcenko(at)coventry.ac.uk

Issue No. 2, 2019

Content

—————————–

  1. Postdoctoral Research Fellow in MHD (ETH ZURICH)
  2. Postdoctoral Research Fellow on Inertial particles and Turbulence (PARIS)
  3. PHD POSITION AT HZDR (deadline 30/04/2019)
  4. MHD Modelling School 2019
  5. NEW BOOK: Self-Exciting Fluid Dynamos
  6. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS
  7. NEXT HYDROMAG NEWSLETTER

I. Postdoctoral Research Fellow in Magnetohydrodynamics (100%)

—————————–

(from Andy Jackson, ETH Zürich, Switzerland)

The Earth and Planetary Magnetism Group at the Institute of Geophysics at ETH Zürich studies planetary magnetism with a strong focus on the Earth. Part of our group is devoted to the mechanisms underlying the generation and evolution of the magnetic field of a planet following theoretical, numerical and experimental approaches.

Postdoctoral Research Fellow in Magnetohydrodynamics (100%)

The position will develop theory and algorithms for the solution of a new class of self-consistent solution to the governing equations of dynamo theory. Depending on background and experience, the fellow will work on one of the following topics: (i) Application of optimal control to the inviscid fluid dynamical equations, together with analytic treatment of viscous effects (ii) Implicit methods of time-stepping (iii) Development of algorithms for anelastic treatment of giant planets. (iv) Understanding geomagnetic reversals. The project is funded by the ERC and the position is for 2 years in the first instance, with the possibility of renewal.

The successful candidate will have a background in mathematics or physical sciences and be expected to (i) carry out his/her own research projects, (ii) co-supervise undergraduate- and graduate-level thesis projects, and (iii) possibly contribute to the teaching of general geophysics courses. We seek a good team-player who can join a small team of about 10 others. Evidence of high performance computing experience is required. The working language of the department is English. At the time of the appointment, the successful candidate must have a doctoral degree in geophysics or a related subject.

We look forward to receiving your online application including the following documents: a full CV, short statement of experience and research interests. Please note that we exclusively accept applications submitted through our online application portal. Applications via email or postal services will not be considered.

For further information about the group, please visit our website: www.epm.ethz.ch. For further information about the position, please contact Prof Andrew Jackson by e-mail, ajackson@ethz.ch (no applications).

Applications should be made online at

Browser: https://apply.refline.ch/845721/7052/pub/1/index.html

Mobile: https://m.refline.ch/845721/7052/pub/1/index.html

—————————–

ETH Zürich

Institut für Geophysik

Sonneggstrasse 5

CH-8092 Zürich

Switzerland

+41 44 633 7349 (work)

+41 79 639 0827 (Mob)


II. Postdoctoral Research Fellow on Inertial particles and Turbulence (100%)

—————————–

(from Romain Monchaux, France )

Experimental Post-Doc position: Settling of aerosol in turbulent flows (1/10/2019)

Location : IMSIA (ENSTA, EDF, CEA, CNRS),

Contact : Romain Monchaux (monchaux(at)ensta.fr)

Duration : 1 to 2 years from fall

Application deadline: 30/06/2019

Advert: http://perso.ensta-paristech.fr/~monchaux/2019_ENSTA_Particle_PostDoc.pdf


III. PHD POSITION AT HZDR, GERMANY

—————————–

(from Andre Giesecke, HZDR, Germany )

The Institute of Fluid Dynamics at Helmholtz-Zentrum Dresden-Rossendorf (HZDR, https://www.hzdr.de) invites for applications for a PhD position in the field of experimental fluid dynamics.

The research tasks involve experiments on precessing fluid flows and are essential for the preparation of the large scale dynamo currently under construction at HZDR.

The PhD student will be responsible for running regular experiments at the water precession experiment and will conduct he related measurements. The tasks include an upgrade of the experiment and the involvement in the preparation of the forthcoming dynamo experiments. Intensive cooperation is mandatory with the project partners at Ruhr-Universitaet Bochum (Prof. R. Grauer), where related numerical models are conducted.

The position will be available from 1 July 2019. The employment contract is limited to three years.

REQUIREMENTS:

  • Diploma or M.Sc in physics/mechanical engineering or related subjects with very good marks and a profound background in fluid dynamics and/or magnetohydrodynamics
  • experience in the operation of experiments, preferably in the field of fluid dynamics
  • willingness for close cooperation with project partners from Universitaet Bochum who will conduct related numerical studies (includes travel to Bochum 1-2 times a year)
  • scientific approach to research questions, self-dependent working style and excellent written and oral communication skills in English

WE OFFER:

  • high scientific professional networking as well as scientific excellence
  • internationality and diversity
  • interesting and diverse tasks, flexible working hours, salary based on the collective agreement TVöD-Bund
  • equality of opportunity and family-friendly structures, corporate health management
  • attractive work and research terms in a highly motivated team

Kindly submit your completed application (including cover letter, CV, diplomas/transcripts, etc.) by 30 April 2019 online via https://www.hzdr.de/db/Cms?pNid=490&pOid=57754&pContLang=en

Andre Giesecke

Helmholtz-Zentrum Dresden-Rossendorf

Institute of Fluid Dynamics — Magnetohydrodynamics

Tel.: +49-351-260 2227.


IV. MHD MODELLING SCHOOL 2019

—————————–

(from Andris Jakovics, Latvia)

October 14-18 2019

University of Latvia

Riga, Latvia

MHD Modelling PhD-School is a practical hands-on course on simulation of complex liquid metal magnetohydrodynamics processes. The main goal of participants will be to learn to work with open-source software, modifying code and applying it to specific systems with liquid metal flow in electromagnetic field.

The main topics are:

  • Electromagnetic mixing and pumping;
  • Electromagnetic semi-levitation and free surface dynamics;
  • Electrovortical flows;
  • Bubbly flows in magnetic field.

The course has three parts:

  • lectures covering topics from modern experimental techniques to promising MHD applications, as well as introduction to simulation tools and methods;
  • numerical modelling of MHD phenomena using both commercial (ANSYS) and open-source (OpenFOAM, ElmerFEM, getDP, EOF-Library) software;
  • laboratory experiments for demonstration and numerical model validation.

After the introductory lectures participants will be assigned small projects within the abovementioned topics and will present the results at the end of the course.

Organizers

Laboratory for mathematical modelling of environmental and technological processes, University of Latvia (Dr. Andris Jakovics, andris.jakovics@lu.lv)

Institute of Electrotechnology, Leibniz University of Hannover (Prof. Bernard Nacke, nacke@etp.uni-hannover.de)

 

More info: http://www.modlab.lv

Participation fee: 150 EUR (till 20. July), 250 EUR (regular)

Online registration: http://ej.uz/MHD2019


V. NEW BOOK: Self-Exciting Fluid Dynamos

—————————–

(by Keith Moffat & Emmanuel Dormy)

Exploring the origins and evolution of magnetic fields in planets, stars and galaxies, this book gives a basic introduction to magnetohydrodynamics and surveys the observational data, with particular focus on geomagnetism and solar magnetism. Pioneering laboratory experiments that seek to replicate particular aspects of fluid dynamo action are also described. The authors provide a complete treatment of laminar dynamo theory, and of the mean-field electrodynamics that incorporates the effects of random waves and turbulence. Both dynamo theory and its counterpart, the theory of magnetic relaxation, are covered. Topological constraints associated with conservation of magnetic helicity are thoroughly explored and major challenges are addressed in areas such as fast-dynamo theory, accretion-disc dynamo theory and the theory of magnetostrophic turbulence. The book is aimed at graduate-level students in mathematics, physics, Earth sciences and astrophysics, and will be a valuable resource for researchers at all levels.

Book website.


VI. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS

—————————–


VII. NEXT HYDROMAG NEWSLETTER

—————————–
will be issued in the middle of August, 2019. Please send information you wish to be included into this issue to

a.pedcenko(at)coventry.ac.uk

not later than 15 of August 2019. If you have an urgent announcement, we can publish at http://hydromag.eu between the issues.

—–
Alex Pedcenko
Coventry University
Priory Street Coventry
CV1 5FB United Kingdom
Tel: +44(0)24-77658974
e-mail: a.pedcenko(at)coventry.ac.uk

Issue # 1, 2019

Content

—————————–

  1. RESEARCH ASSOCIATE POSITION AT COVENTRY UNIVERSITY (UK)
  2. PHD POSITION ON ALFVEN WAVES AND MHD TURBLUENCE (GRENOBLE/CNRS/COVENTRY)
  3. PHD POSITION ON MAGNETOCONVECTION BEYOND THE CHANDRASEKHAR LIMIT (GRENOBLE/COVENTRY/ILMENAU)
  4. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS
  5. NEXT HYDROMAG NEWSLETTER

********************************************************

  1. RESEARCH ASSOCIATE POST ON THE NON-LINEAR STATES OF CONVECTION IN THE EARTH CORE FUNDED BY THE LEVERHULME TRUST AT COVENTRY UNIVERSITY (UK)

—————————–

(from Alban Potherat, Coventry, UK )

A Research Associate position in theoretical fluid mechanics is offered at Coventry University (UK). The project concerns convection under a magnetic field in the so called “tangent cylinder” region of the Earth’s core. Much of the mystery surrounding the Earth’s dynamics (its magnetic field, plate tectonics) lies in the nature of the convective patterns within the Earth’s liquid core, and in particular in the region called the “Tangent Cylinder”. What are the possible convective states under the combined influence of the Earth’s rotation and magnetic field, and how erratic are they? This thesis is part of a theoretical and experimental research program funded by the prestigious Levehulme Trust (http://www.leverhulme.ac.uk), that aims at answering these questions. The purpose of this thesis is to theoretically predict the possible nonlinear convective states for the first time. We will then evaluate which of these states are mostly likely to underpin the Earth’s core convection.

The Research Associate will conduct the theoretical and numerical analysis of the problem under the joint supervision of Prof. Alban Pothérat (http://users.complexity-coventry.org/~potherat/index.html) and Dr Chris Pringle. The study will seek the possible structure of convection by means of advanced stability theory and branch tracking method, to unveil the possible states. In the frame of the research program, the work is purely theoretical/numerical and will be conducted in collaboration with an experimental study that will seek to reproduce and visualise these non-linear states in an experimental model of the Earth Core. Successful candidates are expected to hold a PhD in fluid mechanics or a related discipline, and to have demonstrated excellent abilities in mathematics and programming. The successful candidate will be part the vibrant team of internationally recognised academics and PhD students forming the fluid dynamics group within the Applied Mathematics Research Centre, whose work has been ranked at 83% world-class at the UK’ latest Research Excellence Framework in 2014. This unit is part of the Flow Measurement and Fluid Mechanics Research Centre, specialises in theoretical and experimental fluid mechanics. It is especially renowned for its work on magnetohydrodynamics (MHD), turbulence, stability and geophysical flows. The group closely collaborates with partner groups in world-leading institutions in Australia, China, France, Germany and the UK.

Informal enquiries are welcome: please forward a CV and academic records to Prof. Alban Pothérat (alban.potherat(at)coventry.ac.uk).

PDF Version.

********************************************************

  1. PHD ON ALFVEN WAVES AND MAGNETOHYDRODYNAMIC TURBLUENCE AT GRENOBLE UNIVERSITY/CNRS/COVENTRY UNIVERSITY

—————————–

(from Alban Potherat, Coventry, UK )

Under the joint supervision of Alban Pothérat, (LnCMI Lab/CNRS and Coventry University) (http://users.complexity-coventry.org/~potherat/), Laurent Davoust (Grenoble-INP, SIMAP Lab) and François Debray (LnCMI/CNRS).

Applications are invited for a PhD (possibly including an MSC internship) in experimental fluid mechanics at the LNCMI-G (Grenoble High Magnetic Field Laboratory, http://lncmi.cnrs.fr/?lang=en). The topic concerns the experimental study of turbulence in liquid metals in a very high magnetic field. Turbulence is one of the major challenges of classical physics. Here, we seek to understand the role played by the propagation of magneto-mechanical waves (called Alfven waves) in the statistical and dissipative properties of turbulence and in its transition between two- and three-dimensional states. This type turbulence plays a key role in the dynamics of a number of astrophysical, geophysical, amongst which stellar accretion disks, planetary interiors but is also suspected to appear in engineering problems such as the cooling of nuclear fusion reactors. Until now, Alfven waves have been difficult to reproduce in laboratories because of the extreme conditions in which they appear (high Reynolds numbers and/or high magnetic fields).

The PhD student will be conducting an experimental project during which a turbulent flow is generated within a experimental device filled with liquid metal and placed inside of one the large magnets available at LNCMI in Grenoble, which are capable of producing some of the strongest magnetic fields in the world. In the extreme fields available at LNCMI, the electromagnetic force becomes propagative on the top being diffusive (propagation of Alfvén waves). The goal of this PhD is to use this unique combination of features to reproduce in the laboratory some of the mechanisms that occur in astrophysical or planetary systems and in the context of nuclear energy production, so as to understand them in detail.

The flow will be diagnosed by means of advanced metrology techniques such as ultrasound velocimetry and electric potential mapping. The PhD student will be in charge of running and improving the experimental device, interpreting the results so as to better understand the observed flow regimes. The combination of extreme magnetic fields and this unique experimental device developed by our joint team in Coventry and Grenoble offers for the first time a possibility to extensively map astrophysical and planetary phenomena that have been extremely difficult to probe direclty until now.

Applicants are required to hold, or be on course for an MSc in fluid mechanics or related speciality (Mathematics or Physics). To apply please forward complete academic records and CV to Alban Pothérat (Coventry University, alban.potherat(at)coventry.ac.uk, +44(0)2476 88 88 65), Laurent Davoust (Grenoble-INP, +33(0)476825206, Laurent.Davoust(at)simap.grenoble-inp.fr ) or Francois Debray, LNCMI (francois.debray(at)lncmi.cnrs.fr, +33(0)476 88 12 44). Informal contacts per phone or email are recommended.

PDF Version.

********************************************************

  1. MSc+PhD ON MAGNETOCONVECTION BEYOND THE CHANDRASEKHAR LIMIT

—————————–

(from Alban Potherat, Coventry, UK )

Under the joint supervision of
Alban Pothérat, (Coventry University, UK, http://users.complexity-coventry.org/~potherat/),
Jörg Schumacher (Technische Universität Ilmenau, Germany, https://www.tu-ilmenau.de/tsm/ ),
François Debray (LNCMI/CNRS Grenoble, France, http://lncmi-g.grenoble.cnrs.fr/)

A PhD position in experimental fluid mechanics is open at the High Magnetic Field Laboratory in Grenoble (CNRS/ France). The topic concerns the experimental study of Rayleigh-Bénard convection under the influence of high magnetic fields. This type of convection plays a crucial role in numerous natural and industrial processes: for example in the tachocline layer of the Sun, in the liquid core of the Earth, but also in material processing such as the pulling of silicon ingots or the continuous casting of metallic alloys. In general, magnetic fields introduce a dissipative mechanism through the Joule effect which tends to damp, or even suppress convection. This has an impact on characteristic patterns that form in a convective flow. Chandrasekhar (Physics Nobel Prize 1983) derived the theoretical value of the critical Rayleigh number beyond which convection survives for a given magnetic field in the ideal case of a fluid layer confined between two infinite planes. Nevertheless, when lateral walls are present, convective plumes could potentially persist below this limit and thus locally promote enhanced heat fluxes.

This effect has, until now, never been observed in the laboratory, partly because typical electrically conducting fluids are opaque and thus hard to probe. The purpose of this PhD project is to observe the impact of strong magnetic fields on the formation of convective structures and to characterise these states and their possible transition into turbulent convection. For this, the student will be taking advantage of a new technique recently developed by the groups in Coventry and Grenoble, which consists of using a weakly conducting but transparent electrolyte placed in very high magnetic fields. This technique makes it possible to obtain precise maps of the velocity fields by means of advanced optical measurement methods using laser imaging technology (such as Particle Image Velocimetry or Laser Doppler Anemometry).

The PhD student will be in charge of this experimental project and will collaborate with theoreticians from TU Ilmenau in Germany who will be conducting numerical simulations of this problem in parallel, to compare the results.

Candidates must have a master degree in engineering or physics (300 ECTS credit points) and be motivated to conduct technically advanced experimental projects. Experience in fluid mechanics and/or measurement technology is welcomed. The PhD will benefit from a Co-tutelle between Coventry University (UK) and TU Ilmenau (Germany) leading to a PhD award in each university. The work will be physically based in the laboratory in Grenoble (France) for most of the time with extended stays at sites in the UK and Germany. The position runs for a period of three years and is expected to start in spring 2019.

To apply, please send a CV and a full transcript of academic records to:
Alban Pothérat (Coventry University, alban.potherat(at)coventry.ac.uk)
Jörg Schumacher (TU Ilmenau, joerg.schumacher(at)tu-ilmenau.de)
Francois Debray (LNCMI, francois.debray(at)lncmi.cnrs.fr ).

Informal enquiries are welcome. Please contact Alban Pothérat (+44 2476 88 88 65), Jörg Schumacher (+49 3677 69-2428) TU Ilmenau, or François Debray (+33 4 76 88 12 44), LNCMI.

PDF Version.

********************************************************

  1. SCHEDULE OF CONFERENCES ON MHD AND RELATED TOPICS

—————————–

********************************************************

  1. NEXT HYDROMAG NEWSLETTER

—————————–
will be issued in the end of April, 2019. Please send information you wish to be included into this issue to

a.pedcenko(at)coventry.ac.uk

not later than 15 of April 2019. If you have an urgent announcement, we can publish at http://hydromag.eu between the issues.

—–
Alex Pedcenko
Coventry University
Priory Street Coventry
CV1 5FB United Kingdom
Tel: +44(0)24-77658974
e-mail: a.pedcenko(at)coventry.ac.uk